Characterization of the Role of eIF4G in Stimulating Cap- and IRES-Dependent Translation in Aplysia Neurons
نویسندگان
چکیده
The rate-limiting step(s) of translation in the nervous system have not been clearly identified. We have been examining this question in the cell body of the Aplysia sensory neuron, where translational regulation is important for the regulation of synaptic strength. In the present study, we examined the role of the adaptor protein eIF4G. We cloned Aplysia eIF4G (Ap4G) and Ap4G contains all the standard metazoan eIF4G protein-protein interaction domains. Overexpressing Ap4G in Aplysia sensory neurons caused an increase in both cap-dependent and internal ribosome entry site (IRES)-dependent translation using a previously characterized bicistronic fluorescent reporter. Unexpectedly, measurement of overall translation using the methionine analog, L-azidohomoalanine, revealed that overexpression of Ap4G did not lead to an increase in overall translation rates. Indeed, the effect of Ap4G on the bicistronic reporter depended on the presence of an upstream open reading frame (uORF) in the 5' UTR encoded by the vector. We have previously shown that Mnk strongly decreased cap-dependent translation and this depended on a putative 4G binding domain. Here we extend these results showing that even in the absence of the uORF, overexpression of Mnk strongly decreases cap-dependent translation and this depends on the Mnk binding site in eIF4G. Similarly, an increase in cap-dependent translation seen with overexpression of elongation factor 2 kinase did not depend on the uORF. Overall, we show that eIF4G is rate limiting for translation of an mRNA encoding an uORF, but is not generally a rate-limiting step for translation.
منابع مشابه
Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation.
Numerous cellular mRNAs encoding proteins critical during cell stress, apoptosis, and the cell cycle seem to be translated by means of internal ribosome entry sequences (IRES) when cap-dependent translation is compromised. The underlying molecular mechanisms are largely unknown. Using a HeLa-based cell-free translation system that mirrors the function of cellular IRESs in vitro, we recently dem...
متن کاملThe Triticum Mosaic Virus 5’ Leader Binds to Both eIF4G and eIFiso4G for Translation
We recently identified a remarkably strong (739 nt-long) IRES-like element in the 5' untranslated region (UTR) of Triticum mosaic virus (TriMV, Potyviridae). Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral tra...
متن کاملFunctional characterization of the internal ribosome entry site of eIF4G mRNA.
The eIF4 group initiation factors are required for cap-dependent translation initiation. Infection of mammalian cells by picornaviruses results in proteolytic cleavage of one of these factors, eIF4G, which severely restricts cap-dependent initiation but permits cap-independent initiation to proceed from an internal ribosome entry site (IRES) in picornaviral RNAs. The first 357 nucleotides (nt) ...
متن کاملA novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent
Resistance of translation of some eukaryotic messenger RNAs (mRNAs) to inactivation of the cap-binding factor eIF4E under unfavorable conditions is well documented. To date, it is the mechanism of internal ribosome entry that is predominantly thought to underlay this stress tolerance. However, many cellular mRNAs that had been considered to contain internal ribosome entry sites (IRESs) failed t...
متن کاملA novel mechanism of eukaryotic translation initiation that is neither mG-cap-, nor IRES-dependent
Resistance of translation of some eukaryotic messenger RNAs (mRNAs) to inactivation of the cap-binding factor eIF4E under unfavorable conditions is well documented. To date, it is the mechanism of internal ribosome entry that is predominantly thought to underlay this stress tolerance. However, many cellular mRNAs that had been considered to contain internal ribosome entry sites (IRESs) failed t...
متن کامل